首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38689篇
  免费   3819篇
  国内免费   5861篇
  2023年   559篇
  2022年   654篇
  2021年   1598篇
  2020年   1301篇
  2019年   1549篇
  2018年   1405篇
  2017年   1037篇
  2016年   1421篇
  2015年   2302篇
  2014年   2734篇
  2013年   2888篇
  2012年   3594篇
  2011年   3374篇
  2010年   2211篇
  2009年   2061篇
  2008年   2404篇
  2007年   2166篇
  2006年   1999篇
  2005年   1703篇
  2004年   1528篇
  2003年   1253篇
  2002年   1149篇
  2001年   946篇
  2000年   896篇
  1999年   723篇
  1998年   391篇
  1997年   359篇
  1996年   326篇
  1995年   284篇
  1994年   292篇
  1993年   187篇
  1992年   335篇
  1991年   316篇
  1990年   261篇
  1989年   250篇
  1988年   206篇
  1987年   169篇
  1986年   158篇
  1985年   168篇
  1984年   148篇
  1983年   111篇
  1982年   100篇
  1981年   64篇
  1980年   61篇
  1979年   75篇
  1978年   69篇
  1977年   58篇
  1976年   68篇
  1975年   63篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes   总被引:1,自引:0,他引:1  
The Ca2+-stimulated, Mg2+-dependent ATPase from rat liver plasma membranes was solubilized using the detergent polyoxyethylene 9 lauryl ether and purified by column chromatography using Polybuffer Exchanger 94, concanavalin A-Sepharose 4B, and Sephadex G-200. The molecular weight of the enzyme, estimated by gel filtration in the presence of the detergent on a Sephadex G-200 column, was 200,000 +/- 15,000. The enzyme was purified at least 300-fold from rat liver plasma membranes and had a specific activity of 19.7 mumol/mg/min. Polyacrylamide gel electrophoresis under nondenaturing conditions of the purified enzyme indicated that the enzymatic activity correlated with the major protein band. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, one major band in the molecular weight range of 70,000 +/- 5,000 was seen. The isoelectric point of the purified enzyme was 6.9 +/- 0.2 as determined by analytical isoelectric focusing. The enzyme was activated by Ca2+ with an apparent half-saturation constant of 87 +/- 2 nM for Ca2+. Calmodulin and trifluoperazine at the concentration of 1 microgram/ml and 100 microM, respectively, had no effect on the enzymatic activity.  相似文献   
22.
23.
24.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
25.
26.
贝壳历来是生物工程和材料学研究的重要对象。贝壳中的贝壳基质蛋白质在贝壳的形成与发育过程中具有重要的调控作用。Whirlin类蛋白质(Whirlin-like protein,WLP)是一种从厚壳贻贝(Mytilus coruscus)中鉴定的新型贝壳基质蛋白质。序列分析结果显示,该蛋白质含有PDZ(postsynaptic density/Discs large/Zonula occludens)结构域,而该结构域对贝壳生物矿化的影响目前尚无报道。为深入了解WLP在贝壳形成中对碳酸钙晶体的影响,在序列分析基础上,采用密码子优化结合原核重组表达,获得其重组表达产物后,开展了重组WLP对碳酸钙晶体形貌及晶型的影响研究,结晶速度抑制以及碳酸钙晶体结合分析。分析结果表明,重组WLP能诱导文石型碳酸钙晶体的形貌和方解石型碳酸钙晶体的晶型发生改变;同时重组WLP对碳酸钙晶体具有结合作用,且能抑制碳酸钙晶体的结晶速度。上述结果表明,WLP对贝壳的形成及发育具有重要影响,并可能在贝壳肌棱柱层的形成中发挥了重要作用。  相似文献   
27.
28.
Cane toads (Bufo marinus) are now moving about 5 times faster through tropical Australia than they did a half-century ago, during the early phases of toad invasion. Radio-tracking has revealed higher daily rates of displacement by toads at the invasion front compared to those from long-colonised areas: toads from frontal populations follow straighter paths, move more often, and move further per displacement than do toads from older (long-established) populations. Are these higher movement rates of invasion-front toads associated with modified locomotor performance (e.g. speed, endurance)? In an outdoor raceway, toads collected from the invasion front had similar speeds, but threefold greater endurance, compared to conspecifics collected from a long-established population. Thus, increased daily displacement in invasion-front toads does not appear to be driven by changes in locomotor speed. Instead, increased dispersal is associated with higher endurance, suggesting that invasion-front toads tend to spend more time moving than do their less dispersive conspecifics. Whether this increased endurance is a cause or consequence of behavioural shifts associated with rapid dispersal is unclear. Nonetheless, shifts in endurance between frontal and core populations of this invasive species point to the complex panoply of traits affected by selection for increased dispersal ability on expanding population fronts.  相似文献   
29.
An ATP-dependent calcium transport component from rat liver plasma membranes was solubilized by cholate and reconstituted into egg lecithin vesicles by a cholate dialysis procedure. The uptake of Ca2+ into the reconstituted vesicles was ATP-dependent and the trapped Ca2+ could be released by A23187. Nucleotides, including ADP, UTP, GTP, CTP, GDP, AMP, and adenyl-5'-yl beta, gamma-imidophosphate, and p-nitrophenylphosphate did not substitute for ATP. The concentration of ATP required for half-maximal stimulation of Ca2+ uptake into the reconstituted vesicles was 6.2 microM. Magnesium was required for calcium uptake. Inhibitors of mitochondrial calcium-sequestering activities, i.e. oligomycin, sodium azide, ruthenium red, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and valinomycin did not affect the uptake of Ca2+ into the vesicles. In addition, strophanthidin and p-chloromercuribenzoate did not affect the transport. Calcium transport, however, was inhibited by vanadate in a concentration-dependent fashion with a K0.5 of 10 microM. A calcium-stimulated, vanadate-inhibitable phosphoprotein was demonstrated in the reconstituted vesicles with an apparent molecular weight of 118,000 +/- 1,300. These properties of Ca2+ transport by vesicles reconstituted from liver plasma membranes suggest that this ATP-dependent Ca2+ transport component is different from the high affinity (Ca2+-Mg2+)-ATPase found in the same membrane preparation (Lotersztajn, S., Hanoune, J. and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215; Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020). When the entire reconstituted vesicle population was treated with ATP and 45Ca in a buffer containing oxalate, the vesicles with Ca2+ transport activity could be separated from other vesicles by centrifugation in a density gradient and the ATP-dependent Ca2+ transport component was purified approximately 9-fold. This indicates that transport-specific fractionation may be used to isolate the ATP-dependent Ca2+ transport component from liver plasma membrane.  相似文献   
30.
Ginsenoside compound K (CK), a rare ginsenoside originating from Panax Ginseng, has been found to possess unique pharmacological activities specifically as anti-cancers. However, the role of cytochrome P450s (CYPs) in the metabolism of CK is unclear. In this study, we screened the CYPs for the metabolism of CK in vitro using human liver microsomes (HLMs) or human recombinant CYPs. The results showed that CK inhibited the enzyme activities of CYP2C9 and CYP3A4 in the HLMs. The Km and Vmax values of CK were 84.20±21.92 μM and 0.28±0.04 nmol/mg protein/min, respectively, for the HLMs; 34.63±10.48 μM and 0.45±0.05 nmol/nmol P450/min, respectively, for CYP2C9; and 27.03±5.04 μM and 0.68±0.04 nmol/nmol P450/min, respectively, for CYP3A4. The IC50 values were 16.00 μM and 9.83 μM, and Ki values were 14.92 μM and 11.42μM for CYP2C9 and CYP3A4, respectively. Other human CYP isoforms, including CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on CK metabolism. The results suggested that CK was a substrate and also inhibitors for both CYP2C9 and CYP3A4. Patients using CK in combination with therapeutic drugs that are substrates of CYP2C9 and CYP3A4 for different reasons should be careful, although the inhibiting potency of CK is much poorer than that of enzyme-specific inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号